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Executive Summary 
 

A longstanding threat to bridge safety is that bridge foundations can be susceptible to 

scour. This problem is compounded when the bridge foundation depth is unknown. 

According to the National Bridge Inventory, about 28,000 highway bridges with unknown 

foundation depths were recorded in 2016. Researchers have developed and 

investigated several methods over the years to determine embedded foundation lengths 

which are broadly classified as surface-based techniques and borehole-based 

techniques. Surface-based techniques mainly include sonic echo/impulse response type 

methods and bending wave method. Several borehole-based methods which include 

parallel seismic, cross-hole sonic, borehole sonic, borehole radar, and borehole 

ultrasonic methods as well as induction testing and borehole magnetic testing for steel 

piles have also been developed. The borehole methods are considered reliable but 

expensive, and the surface-based methods are less expensive but lack the same level 

of reliability as the borehole methods. To address this problem, we have developed a 

new surface-based nondestructive test method that we call ‘effective dispersion analysis 

of reflections’ (EDAR). EDAR is not only inexpensive since it falls in the category of 

surface-based method, but also accurate and reliable. The method is based on 

accurately capturing the dispersion of waves as they propagate through a pile and is 

applicable to both longitudinal and bending waves. Specifically, EDAR processes 

measured accelerations at two distinct locations on the pile due to hammer impact, 

resulting in an estimate of the pile length. EDAR analysis hinges on examining the 

oscillations in phase difference that are due to reflections as a special function of 

wavenumber which is defined using the dispersion relation. The oscillations in phase 

difference are a consequence of the initial and reflected wave arrivals at the sensor 

locations and are related to the distance between the sensors and the distance from the 

sensor to the pile tip where the wave gets reflected. This relationship between the 

oscillations and the lengths is explained using simple bar and beam wave propagation 

theories and is used to obtain the length of the pile. We have validated EDAR using side 

impacts on concrete-filled steel tubes in laboratory setting. The results consistently 

showed less than 5 percent error in a laboratory setting.  

 

 

 

 

 

 

 

 



 

4 
 

Table of Contents 
1 Introduction .............................................................................................................. 7 

2 Problem Definition and Experimental Set-up ........................................................... 8 

3 Effective Dispersion Analysis of Reflections (EDAR): Theory .................................. 9 

3.1 Longitudinal waves in bar ................................................................................. 10 

3.1.1 Propagation without reflections .................................................................. 10 

3.1.2 Effects of reflections on EDAR plot ............................................................ 12 

3.2 Flexural waves in beams .................................................................................. 15 

3.3 Synthetic examples for EDAR verification ........................................................ 17 

4 Experimental Validation of EDAR ........................................................................... 19 

5 Conclusion ............................................................................................................. 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

List of Figures  

 

Figure 1: Pile and experimental set-up schematic. .......................................................... 9 

Figure 2: Schematic of infinite bar. ................................................................................ 10 

Figure 3:  EDAR plot for infinite bar: phase difference vs. effective wavenumber. ........ 12 

Figure 4:  Semi-infinite bar: single reflection. ................................................................ 12 

Figure 5:  EDAR plot for semi-infinite bar superimposed on infinite bar. ....................... 13 

Figure 6:  Schematic of Bernoulli-Euler beam model. ................................................... 18 

Figure 7:  EDAR plot for synthetic Bernoulli-Euler beam experiment involving bottom 

reflections. ..................................................................................................................... 18 

Figure 8:  EDAR plot for Bernoulli-Euler beam model: bottom and top reflections. ....... 19 

Figure 9: Concrete filled steel tube tested at NCSU. ..................................................... 20 

Figure 10: Equipment used for EDAR testing. ............................................................... 21 

Figure 11:  Experimental response: time domain .......................................................... 22 

Figure 12:  Representative experimental EDAR plots. .................................................. 22 

Figure 13:  Theoretical dispersion relation: Bernoulli-Euler vs. Timoshenko beam 

theories. ........................................................................................................................ 23 

Figure 14:  Comparison of Bernoulli-Euler and Timoshenko EDAR plots. ..................... 24 

Figure 15:  Length estimates as a function of frequency. .............................................. 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

List of Tables 

Table 1: Model Bernoulli-Euler Beam Properties .......................................................... 17 

Table 2: Bernoulli-Euler Beam Model Length Estimate ................................................. 18 

Table 3: Properties of Concrete Filled Steel Tube ......................................................... 20 

Table 4: Equipment Specifications ................................................................................ 21 

Table 5: Length Estimate from First Observed Wiggle Using Bernoulli-Euler Beam 

Theory ........................................................................................................................... 23 

Table 6: Average Length Estimates .............................................................................. 24 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

1 Introduction  

 
Even after more than two decades of research and implementation ([1],[2],[3]), the 

National Bridge Inventory reports that the United States has about 28,000 bridges with 

unknown foundation depths in 2016 that could be potentially susceptible to scour. The 

scour vulnerability of a bridge cannot be determined until the embedded depth of the 

foundation is known, and records that contain the total lengths of piles do not always 

exist. Thus, in order to evaluate the potential for scour, nondestructive evaluation (NDE) 

techniques are needed to estimate the length of embedded piles. 

One class of NDE methods for pile foundations is borehole techniques, which include 

parallel seismic, cross-hole sonic, borehole sonic, borehole radar, and borehole 

ultrasonic methods as well as induction testing and borehole magnetic testing for steel 

piles (see [4]–[10] for examples). All these tests require either a borehole alongside the 

pile foundation or a pre-installed test pipe in the pile. They also require expensive 

equipment along with an experienced user to interpret the results. Even though these 

techniques are reliable and applicable to a vast number of situations, using borehole 

methods to test a large group of piles is not practical due to excessive costs and site 

limitations.  

The other class of NDE methods is surface-based techniques, which do not require 

drilling boreholes. These methods include sonic echo, impulse response, ultra-seismic, 

and bending wave (short kernel) methods. Levy [11] and Dunn [12] pioneered work that 

led to the development of the sonic echo and impulse response techniques. Both 

methods are based on generating a longitudinal wave using a hammer impact on the 

top of a pile and analyzing the obtained response in the time domain for the sonic echo 

method and in the frequency domain for the impulse response method. Specifically, in 

time domain length estimates are obtained by identifying peaks associated with initial 

and reflected waves. This methodology became more prevalent after the advent of 

digital signal processing, starting with the work of Rausche et al. [13].Several 

researchers have continued to use this methodology since then for a variety of 

situations [14]–[19]. Most importantly, however, using these methods when the top of 

the pile is inaccessible adds considerable difficulty as peak picking becomes 

complicated when the impact is not on the top. Recent work by Rashidyan [20] 

investigated sonic echo type of methods for existing timber piles without top access; 

however, other researchers determined that this method is not successful when testing 

steel H piles [21]. An extension of the sonic echo method using multiple sensors on the 

pile side, known as the ultra-seismic method, also has been established. All these 

surfaced-based methods rely on producing a wave that is dominated by longitudinal 

mode. However, due to the inaccessibility of the pile top, this process remains difficult 

because other types of waves also play a significant part in the data collected.  

In order to try to solve the problems associated with an inaccessible pile top, Holt and 

Douglas first conceived the idea of using lateral impacts to induce flexural waves rather 
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than using the impact-echo method to induce conventional longitudinal waves [22]. A 

lateral impact imparts most of the energy into bending waves that are dispersive in 

nature thus, it is essential to deal with dispersive flexural waves. To this end, Holt and 

Douglas [22] introduced the bending wave or short kernel method  to process 

responses from dispersive flexural waves to obtain travel-time information, which 

attempts to delineate the peaks through convolution, thereby enabling the application of 

simple travel-time algorithms. Although this idea is innovative, the choice of short kernel 

and subsequent peak selection is complicated, even for experienced users, resulting in 

subjective estimates with large errors (see e.g., [23]). Other techniques, such as Hilbert-

Huang transform or continuous wavelet transform have been used by Subhani et al. 

[23], Farid [24] and Sheng-Hugo et al. [25]. All these techniques are based purely on 

signal processing and do not explicitly incorporate the underlying dispersion properties 

of the generated waves that could be utilized constructively to develop pile length 

estimation techniques. 

Given both the advantages of using side impacts and the limitations associated with the 

existing processing techniques for flexural waves, we propose a new signal processing 

technique we call ‘effective dispersion analysis of reflections’ (EDAR). EDAR extracts 

length information by carefully considering the physics of wave dispersion, which has 

been ignored thus far in relevant methodologies. The experimental set-up for EDAR is 

identical to flexural wave testing, but the critical data processing step is fundamentally 

different and built on robust mathematical analysis that is, in turn, built on the precise 

dispersion relation that represent wave physics. We verified the proposed methodology 

using synthetic data and validated it using laboratory experiments. 

The outline of the rest of the paper is as follows. Section 2 contains the problem 

definition and experimental set-up. A detailed derivation of the EDAR technique is given 

in Section 3, starting from simple longitudinal waves and leading to more complicated 

flexural waves. Section 4 contains the results from the laboratory validation effort, 

followed by conclusions in Section 5.   

2 Problem Definition and Experimental Set-up 
 

Pile foundations are long shafts made of various materials, such as timber, concrete, 

steel, or a combination thereof, and are either cast in place or driven deep into the soil. 

Many bridges have part of the pile exposed above the soil, terminating in the pile cap. 

The aim is to estimate the embedded length of the pile using nondestructive testing. To 

achieve this aim, the pile foundation is excited by imparting a sharp strike using a hand-

held hammer, and the response is measured at a minimum of two locations in the 

foundation using sensors such as accelerometers or geophones. Depending on the 

location and type of excitation imparted to the pile, several types of waves can exist, 

such as longitudinal, flexural, and high order guided waves. Figure 1 presents a typical 

pile subjected to lateral impact, which is also the experimental set-up used in this study.  
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Figure 1: Pile and experimental set-up schematic.  

We employed EDAR to process responses measured at two sensor locations along the 

length of a pile. EDAR can be applied for both longitudinal and flexural waves. Similar to 

the aforementioned surface-based methods, EDAR requires access to the exposed 

portion of the pile to record accelerations or velocity from a hammer impact at a 

minimum of two locations along the length of the pile. The major contribution of this 

paper (and how it differs from earlier methods) is the way the data are processed to 

estimate the length of a pile. Section 3 discusses the concept behind processing the 

data using the EDAR methodology.  

3 Effective Dispersion Analysis of Reflections (EDAR): 

Theory  
 

The fundamental concept of EDAR is based on the phase difference between the 

responses measured at the two sensor locations. The basic theory is explained for both 

longitudinal and flexural waves, followed by verification using synthetic data and 

validation using laboratory experiments. EDAR presents a unique way to process the 

same response data that can be obtained from the ultra-seismic or short kernel 

(bending wave) methods to estimate the length of the pile by incorporating the physical 

dispersion characteristics of wave propagation.  
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The phase difference between the responses at the two sensor locations in the 

frequency domain is given by,  

 2

1

( )
Imag log

( )
d

u
P

u





  
    

  
 , (1) 

where 1( )u   and 2 ( )u   are the Fourier transforms of the responses obtained at the two 

sensor locations, respectively. The phase difference between the responses obtained at 

the two sensor locations in the frequency domain contains the product of theoretical 

wavenumber ( k ) and the lengths associated with the structure. Generally, the phase 

depends on the distance the wave has traveled before and after reflections from the 

various boundaries in the structure. Section 3.1 explains the characteristics of the phase 

difference and extraction of the pile length using simple theoretical models: Section 

3.1.1 discusses wave propagation without reflections and Section 3.1.2 discusses the 

effects of the reflections on an EDAR plot. 

3.1 Longitudinal waves in bar  

 

3.1.1 Propagation without reflections 

 

Longitudinal or axial waves are nondispersive in nature and thus exhibit minimal 

variation in the initial waveform observed in the time domain. Figure 2 shows the 

simplest case of an infinite bar in which a propagating wave traveling from left to right is 

encountered once by the two sensors. 

 

Figure 2: Schematic of infinite bar.  

 

The second order differential equation describing the axial wave propagation in a rod is given by:

  

 
2 2

2 2
0

u u
EA A

x t


 
  

 
 , (2) 

where E is Young’s modulus,   is density, and A is area. The solution of the equation takes the 

form,  
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ikxu Ae  , (3) 

where k is the wavenumber and  is the temporal frequency. The wavenumber can be 

determined from the frequency by substituting Equation (3) into Equation (2), which 

gives the dispersion relation expressed as Equation (4).  

 
b

k
c


  , (4) 

where bc  is the bar wave velocity and is given by E  . Substituting Equation 

Error! Reference source not found. in Equation (1) results in the phase difference: 

 2 1( )dP k L L k L     . (5) 

Thus, the phase difference is a product of the theoretical wavenumber ( k ) and the 

distance between the sensors ( L ). Practically, the phase difference that is calculated 

from the sensor responses results in wrapping between   and  .  

An important aspect of this method is to plot the phase as a function of a newly defined 

quantity called the ‘effective wavenumber’ ( ek ), which is a scaled wavenumber that 

does not require knowledge about material properties (or reduces the requirements for 

knowledge about material properties). In the specific case of a bar, because the 

theoretical wavenumber ( k ) in Equation (4) is directly proportional to the frequency, the 

effective wavenumber is simply defined as the frequency: 

 
bar

ek   . (6) 

For reasons that will become clear after the reflections are analyzed in Section 3.1.2, 

the plot with the phase difference as the abscissa and the effective wavenumber as the 

ordinate is called the EDAR plot throughout the rest of the paper. The slope of the 

EDAR plot is governed by the distance between the sensors ( L ) and the velocity of 

the wave propagation ( bc  ):  

 bar b
e d

c
k P

L

 
  

 
 . (7) 

The slope from equation (7) would determine the value on the effective wavenumber 

axis at which the phase gets wrapped. The value at which the first wrapping occurs is 

called the cycle period ( I
K ) and is given by  

bar b
I

c
K

L





.            (8) 

 This is the first of the two periods associated with the phase and is a consequence of 

the initial arrival of the wave. Thus, the cycle is closely related to the time difference 
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between the initial arrivals of the propagating wave at the two sensor locations. As an 

example, consider a model bar of infinite length with a wave propagation velocity of 1 

m/s and lengths 1 3L m  and 2 3.5L m , thus making the distance between the sensors

0.5m . Figure 3 presents the EDAR plot that is obtained using the solution form in 

equation 3. The first wrapping of phase occurs at 2 , as is expected from Equation (8).   

   

Figure 3:  EDAR plot for infinite bar: phase difference vs. effective wavenumber.  

 

 

3.1.2 Effects of reflections on EDAR plot 

 

Introducing a boundary at x  0  makes the bar semi-infinite and results in a single 

reflection of the wave from the boundary; see Figure 4 that assumes a wave traveling 

from negative infinity towards the boundary where it gets reflected.  

 

Figure 4:  Semi-infinite bar: single reflection.  
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Without loss of generality, the displacement in the frequency domain anywhere in the 

bar can be assumed to be  

 ( ) ikx ikxu x Ae Be   , (9) 

where the first term on the right-hand side represents a forward propagating wave and 

the second term represents the reflected wave. Similar to the infinite case, a model bar 

with the same parameters are considered for a semi-infinite bar, but the displacement 

form in equation (9) is used to account for the reflection from the boundary that is 

introduced; Figure 5 presents the resultant EDAR plot that is computed for a semi-

infinite bar. In addition to the cycle oscillations that are similar to those found for the 

infinite bar, smaller oscillations can be observed with a smaller period in the semi-

infinite bar. These small oscillations, called ‘wiggles’, are a consequence of the wave 

being reflected at the boundary and can be utilized to estimate the location of the 

boundary.  

 

 

Figure 5:  EDAR plot for semi-infinite bar superimposed on infinite bar.  

 

The responses at the accelerometer locations 1A  and 2A  at distances 1L  and 2L , 

respectively, from the boundary are  

 1 1

1 1( )
ikL ikL

u L Ae Be


   , (10) 

 2 2

2 2( )
ikL ikL

u L Ae Be


  .  (11) 
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Using these displacements, the phase difference can be calculated from Equation (1). 

The steps involved in calculating the phase difference analytically are shown here as 

Equations (12) through (14).  

 
1

2 1

2

2
( )1

2

2

ikL
ik L L

ikL

u Ae B
e

u Ae B

 
  

 
   (12) 

Taking the logarithm of the ratio shown in Equation (12) gives  

 1 22 21
2 1

2

( ) ( ) ( )
ikL ikLu

log ik L L log Ae B log Ae B
u

 
      

 
 . (13) 

The imaginary part of Equation (13) is the phase difference. The imaginary part of the 

logarithm of a complex number is the argument of the complex number and thus  

 

1

2 3

1 11 2
2 1

1 2

sin(2 ) sin(2 )
( ) tan tan

cos(2 ) cos(2 )
d

b

b b

A kL A kL
P k L L

B A kL B A kL

    
      

    
 . (14) 

The periodic nature of dP  can be explained from the three terms 1b , 2b , and 3b . The first 

term is exactly the same as the one obtained for the infinite bar and, along with phase 

wrapping, gives rise to the cycles shown in the EDAR plot in Figure 3. The terms 2b  and 

3b  are responsible for the smaller oscillations or wiggles observed in Figure 5. The 

trigonometric functions 2b  and 3b  can be shown to have a period of 1L  and 2L , 

respectively. Because the distance between the sensors is small compared to the 

length of the pile [ L1   is approximately equal to L2   that is approximately equal to 
eL ], 

eL  

is the distance between the midpoints of the sensors to the boundary. Thus, the period 

of the last two terms in Equation (14) in the theoretical wavenumber (k) space is given 

by  

 bar b
R

c
K

L


  . (15) 

One of the main practical concerns here is obtaining an accurate estimate of the wave 

velocity for the system under consideration. Often, pile foundations are old and 

deteriorated and knowledge about the construction material is hard to obtain. Examining 

the ratio of the cycle and wiggle periods helps resolve this issue. The ratio of the cycle 

and wiggle periods is  

 

bbar e

I

bar
bR

e

c
K LL

cK L
L




 


 . (16) 
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Once the cycle and wiggle periods are calculated from the EDAR plot, the only unknown 

is length 
eL , which can be computed without need for any other information about the 

pile. Because the plot effectively captures (a) the effect of the dispersion relation (simple 

in this case but can be more complicated for beams) and (b) the effect of reflections 

from the boundary, the plot and the ensuing analysis that result in Equation (16) are 

referred to as the ‘effective dispersion analysis of reflections’, hence, ‘EDAR’.  

The proposed EDAR technique is similar to the travel-time approach for nondispersive 

systems, where the travel time between sensors can be used to compute the wave 

velocity, which in turn can be used to compute the unknown boundary locations based 

on the arrival times of the reflections. The key advantage of the proposed EDAR 

method is that it can be extended to dispersive wave propagation, where travel-time 

approaches fail due to the significant distortion of the waves that is caused by 

dispersion. Section 3.2 provides details regarding this extension of EDAR. 

 

3.2 Flexural waves in beams  

 

Bending waves can be generated by a lateral impact to the pile. The test set-up for 

bending waves is exactly the same as for longitudinal waves and the responses are 

likewise measured at a minimum of two sensor locations. There are two main 

differences between the waves propagating in a bar and a beam. Firstly, along with the 

propagating waves, there exists evanescent waves, which decay exponentially.  Due to 

this decaying nature, the effect of evanescent waves on measured reflections is 

negligible and does not have a significant effect on EDAR processing. Secondly, the 

propagating waves are dispersive in nature as explained Equations (17) through (19) 

which is a critical for the formulation of the EDAR procedure.   

The governing differential equation for a Bernoulli-Euler (BE) beam is given by 

 
4 2

4 2
0,

v v
EI A

x t


 
 

 
  (17) 

where v  is the transverse displacement. Similar to the case for a bar, the general 

solution for Equation (17) can be given by 

 
ikx i ty e   . (18) 

Substituting Equation (18) in Equation (17) we get the dispersion relation between 

wavenumber and temporal frequency given by 

 
b

k
c r


  , (19) 
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where bc  is the bar wave velocity and r I A  is the radius of gyration. The phase and 

group velocities can be calculated from Equation (19); clearly, they are frequency-

dependent, resulting in wave dispersion, which distorts the waveform as it propagates 

through the length of the beam. This wave distortion makes peak-picking difficult and 

often impossible, thus making travel-time approaches difficult.  

The dispersion relation shown in Equation (19) is the key to defining the effective 

wavenumber for EDAR. The material constants and cross-sectional properties are 

dropped from the definition of the effective wavenumber for a BE beam in order to 

facilitate the estimation of length without prior knowledge about the constants, as 

indicated by Equation (20). 

 
BE

ek    (20) 

This particular definition makes the relation between the phase difference and effective 

wavenumber linear, and thus, all the expressions relating to EDAR obtained for a bar 

become applicable to a beam. The cycle and wiggle periods computed using the above 

definitions are  

 
bBE

I

c r
K

L





 , (21) 

 
bBE

R e

c r
K

L


  .  (22) 

Similarly, taking the ratios of the two periods, a length estimate of the pile (
eL ) can be 

obtained as  

 
BE

e I

BE

R

K L
L

K


  . (23) 

Once the responses at the sensor locations are obtained, Equation (23) requires only 

the cycle period, wiggle period, and the distance between the sensors to obtain an 

estimate for the length of the member. The important modification is the definition of the 

effective wavenumber as the square root of the frequency, thus making the wiggle 

period constant and facilitating the extension of the bar length estimation shown in 

Equation (16) to the beam length estimation shown in Equation (23). 

This method pertains specifically to BE beam theory. BE beam theory is simple, but not 

accurate for higher frequencies where the wavelength is of the same order as the beam 

thickness. However, the EDAR methodology can be extended to more sophisticated 

models, such as Timoshenko beam theory. The governing equation for a Timoshenko 

beam with Young’s modulus E , density  , shear modulus G , area A , moment of inertia 

I , and Timoshenko shear coefficient  is  
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The corresponding dispersion relation is  
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 . (25) 

EDAR can be used with any model for which the dispersion relation can be obtained 

either theoretically (Timoshenko) or numerically (guided wave propagation). As models 

become more sophisticated, they more closely represent actual wave physics but at the 

same time lack the simplicity of the bar or BE beam model. Different material properties 

regarding structure might be needed as opposed to not requiring any material properties 

as is the case with the simpler BE beam model. The EDAR procedure must be used 

cautiously, paying utmost attention to the frequency content under consideration and 

the validity of the underlying models. At a lower frequency, use of BE beam theory 

might be justified, but at higher frequencies, more robust models, such as Timoshenko 

beam theory or even more sophisticated models based on guided wave theory, may be 

required. 

  

3.3 Synthetic examples for EDAR verification 

 

In this study, a finite BE beam was modeled with half spaces (HS) on the top and 

bottom with variable material properties to control the reflection coefficients and to treat 

reflections from different boundaries separately. Material damping was introduced by 

using complex values for the modulus of the pile. Table 1 presents the model BE beam 

properties and Figure 6 presents a schematic of the BE beam model with lengths.  

Table 1: Model Bernoulli-Euler Beam Properties  

Property  Value  

Young’s Modulus  35 GPa 

Density  2400 kg 
m/s2 

Poisson’s Ratio  0.1 
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Figure 6:  Schematic of Bernoulli-Euler beam model. 

 

Example 1: The top HS is modeled such that it matches the beam to prevent reflections 

from the top. The bottom HS modulus is a large value to simulate a fixed end. Figure 7 

presents the EDAR plot obtained from the BE model and Table 2 presents the BE 

model beam length estimates. 

 

 

Figure 7:  EDAR plot for synthetic Bernoulli-Euler beam experiment involving bottom 
reflections.  

 

Table 2: Bernoulli-Euler Beam Model Length Estimate  

Cycle 
Period  

 Wiggle 
Period  

Distance 
between 
sensors  

Estimated 
Length (m) 

Actual 
Length (m) 

Error  

64.49 6.2 0.4 5.66 5.7 -0.7% 
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Example 2: Both the top and bottom HS moduli are set to a large value to simulate a 

beam with fixed boundary conditions on both ends. Figure 8 presents the EDAR plot 

obtained from the BE beam model.  

 

Figure 8:  EDAR plot for Bernoulli-Euler beam model: bottom and top reflections.  

 

Figure 8 shows the effect of the top reflection in the EDAR plot. Even though the top 

reflections disturbed the wiggle, the important aspect to note is the distinctive 

characteristics of the disturbances. They do not look similar to wiggles and can be 

ignored while calculating the wiggle period. This difference between the disturbances 

shown and wiggles is a consequence of the impact locations and the wave propagation 

direction. By using the wiggles in the EDAR plot, similar length estimates, as shown in 

Table 2, were obtained. Depending on the length to the top of the pile, there can 

sometimes be interference between the top effect and cycle frequency. This situation 

can be avoided by using multiple distances between the sensors, which we did during 

actual experimentation. We used four sensors instead of the two sensors required for 

EDAR. In this way, we built redundancy into the test and thus the cycle and wiggle 

periods can be obtained from multiple sensor combinations. 

   

4 Experimental Validation of EDAR  
 

Following the successful verification of EDAR using synthetic data, we performed 

experiments at the Constructed Facilities Laboratory at North Carolina State University 

(NCSU) to validate the proposed EDAR. Figure 9 shows one of the concrete filled steel 

tube (CFST) piles, installed as part of a different project at NCSU, which we used for 

initial testing. Table 3 presents the properties of the CFST. 
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Figure 9: Concrete filled steel tube tested at NCSU. 

 

 
Table 3: Properties of Concrete Filled Steel Tube 

Property  Value  

Total Length  19 feet 5.25 
inches  

Embedded Length  13 feet 8 inches  

Cap Dimensions  24 x 18 x 18 
inches  

Concrete Diameter  11.5 inches 

Steel Thickness  0.25 inches  

 
 

 

Accelerometers from PCB (352C33) and a data acquisition system from National 

Instruments (NI9232) were used respectively for sensing and recording the responses 

of CFST to a lateral impact from a small sledge-hammer. Figure 10 shows the 

equipment used for laboratory testing and Table 4 provides a summary of the 

equipment specifications. 
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Figure 10: Equipment used for EDAR testing.   

 

Table 4: Equipment Specifications  

Equipment type  Model  Important specifications  

Item  Range  

Accelerometer PCB 352C33 Frequency  0 to 10000 Hz  

  Measurement Range  ±50 g 

  Sensitivity  100 mV/g 

DAQ System NI 9234 with USB 
chassis  

Analog Input 
Resolution  

24 Bits  

  Sampling Rate  51.2 KS/s  

 
 

Four accelerometers were used to build redundancy in the data obtained, giving six two-

sensor combinations. The distances between the four sensors were 8, 6, and 10 inches 

and are directly reflected in the cycle periods observed in the EDAR plots. Figure 11 

presents the time domain plots of the accelerations obtained at the four sensor 

locations. Examining these time histories indicate that there are no clear peaks 

associated with incident and reflected waves, owing to the dispersion associated with 

flexural waves.  
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Figure 11:  Experimental response: time domain  

 

Figure 12 presents EDAR plots that clearly show the cycles and wiggles expected from 

the theory presented earlier in section 3. Raw data from the tests were processed using 

an exponential window in the time domain to reduce noise effects and to facilitate peak-

picking to find the wiggle period.  

 

Figure 12:  Representative experimental EDAR plots.  

Figure 13 presents the theoretical dispersion relation computed based on the pile 

properties for BE and Timoshenko beam theories.  
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Figure 13:  Theoretical dispersion relation: Bernoulli-Euler vs. Timoshenko beam 
theories.  

 

It is well known that Timoshenko beam theory is more accurate than BE theory for 

higher frequencies, but at low frequencies the dispersion curves overlap for both 

models. Thus, using the lowermost wiggle in the frequency axis and cycle period 

between the farthest two sensors, a length estimate can be obtained.  

Table 5: Length Estimate from First Observed Wiggle Using Bernoulli-Euler Beam 
Theory 

Cycle 
period  

Wiggle 
period from 
lowermost 

wiggle 

Distance 
between 
sensors  

Estimated 
length (m) 

Actual 
length (m) 

Error  

34.18 3.63 .6096 18.83 19.42 3% 
 

 

Even though the estimate presented in Table 5 is close to the actual length, with an 

error of 3 percent, many wiggles can be observed at different levels on the theoretical 

wavenumber axis. Each of these wiggles were used to calculate the wiggle period and 

subsequently used to estimate the length. As explained earlier, the main difference 

between the BE and Timoshenko beam theories is the theoretical wavenumber axis, 

and thus, the cycle and wiggle periods are changed, as shown in Figure 14. In Figure 

15, the length estimates obtained from each observed wiggle are plotted as a function 

of the frequency at each wiggle. Clearly, the BE beam theory estimates are a function of 

the frequency and increase as we move up the frequency. This frequency dependence 

is reduced greatly for estimates obtained using Timoshenko beam theory, and the 

average error percentage also is reduced significantly (see Table 6).  
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Figure 14:  Comparison of Bernoulli-Euler and Timoshenko EDAR plots.  

 

 

Figure 15:  Length estimates as a function of frequency.  

 

Table 6: Average Length Estimates 

 Bernoulli-Euler 
theory 

Timoshenko theory Actual length (ft) 

Estimate (ft) 21.94 19.65 19.42 

Error 13% 1.18% 
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Unlike Timoshenko beam theory, BE beam theory does not require any information 

about the pile properties to calculate the effective wavenumber defined in Equation (20). 

However, BE theory leads to a less accurate representation of the exact physical 

system, and thus, the resulting estimates are less accurate. Therefore, depending on 

the availability of material property estimates and location of the wiggles in the 

frequency axis, one of the two theories can be used to obtain the length. Note that only 

the relative value of shear stiffness compared to flexural stiffness is needed for 

Timoshenko beam theory; this value is often a function of Poisson’s ratio, which tends 

not to change much.  

In a more general sense, waves that propagate inside a pile are ‘guided’ waves owing 

to their three-dimensional nature and reflections from all the boundaries of the pile. 

Various research efforts conducted at Northwestern University by Finno [26], Hanifah 

[27], Chao [28], Wang [29], and Lynch [30] have considered the pile as a cylindrical 

wave guide to obtain the longitudinal, torsional, and flexural modes of vibrations and 

corresponding dispersion relation. The predominant modes in longitudinal and flexural 

waves are the first modes, namely L(0,1) and F(1,1), for frequencies excited via 

hammer impact, which gives us more confidence to use a 1-D wave propagation model.  

Current and future work to improve the estimates at higher frequencies and potential 

improvements found in sophisticated models, such as those derived from guided wave 

theory, are being explored. The piles used in this study, despite being full scale, were 

relatively short in length compared to typical piles in the field. Also, the soil conditions 

for the tests were relatively loose soil, which could potentially have had a minimal effect 

on the EDAR estimations. Even though the methodology has been experimentally 

demonstrated to work for CFST piles, it should be applicable to other types of pile 

foundations as well. Such extension is left for future investigations.  

5 Conclusion  
 

A newly developed NDE methodology, EDAR, is introduced in this work. EDAR is based 

on obtaining the phase difference of responses at two different locations on a pile in the 

frequency domain as a function of a newly defined quantity called the ‘effective 

wavenumber’. The effective wavenumber is a function of the dispersion relation of the 

model chosen to represent the physical system and the type of impact. The theory 

behind EDAR is based on longitudinal and flexural waves. We conducted experimental 

validation and found the pile length estimates to be consistently within a 5 percent error 

margin. EDAR methodology is based on the underlying physics of wave propagation 

and thus improves reliability for the results obtained. EDAR is currently being evaluated 

in the field, following its success in laboratory test conditions. Although we have 

demonstrated EDAR’s effectiveness in estimating the length of a pile, the method 

should be extensible to other scenarios where the length of a member, e.g., an 

electricity pole, is to be determined.  
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Implementation and Technology Transfer Plan 
 

A follow up project with NCDOT is currently underway which involves further field 

testing of the EDAR methodology. Avenues to explore are (a) hammer choice, (b) 

impact locations, (c) accelerometer spacing, (d) enhanced beam/waveguide theories, 

(e) investigation of the effect of the superstructure, and (f) effect of soil. These 

investigations require extensive field testing and advanced analysis (some field testing 

was conducted as part of this project and the results will be presented once the 

methodology is finalized as a part of the ongoing project). Furthermore, before the 

method can be routinely used in the field, blind validation must also be performed. Thus, 

a precise implementation plan is postponed until the completion of the ongoing project.   
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